The generator matrix 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X X X X X X X X X X X X X X 1 1 1 1 1 1 1 1 1 1 1 1 2 0 2 0 2 2X 2 2X 2 0 2 0 X 2 X X 2 X X X 2 2X 2 2X X 2 2 2 X 2 2 1 0 2X+2 0 2X+2 0 2X+2 0 2X+2 2X 2 2X 2 2X 2 2X 2 0 2X+2 0 2X+2 0 2X+2 0 2X+2 2X 2 2X 2 2X 2 2X 2 2X+2 2X+2 2X+2 2X+2 2 0 2X 2 2 0 2X 2 0 2X 0 2X+2 0 2X+2 0 2X+2 0 2X+2 2X 2X 2X 2X 2X+2 2 2X+2 2 2X+2 2 2 2 2X+2 2 2 2 0 2X 2X 0 0 0 0 2X 2 2 2 2 2X 2X 2X 0 0 2X 0 2 0 0 2X 0 0 2X 2X 2X 2X 2X 2X 2X 0 0 0 0 0 0 0 0 2X 2X 2X 2X 2X 2X 2X 2X 0 0 0 0 0 0 2X 2X 2X 0 0 0 2X 2X 2X 0 2X 2X 0 0 0 0 2X 2X 2X 2X 2X 2X 0 0 0 0 2X 2X 0 2X 0 2X 2X 0 0 2X 0 0 0 2X 0 2X 0 2X 2X 0 2X 0 0 2X 2X 2X 0 0 2X 2X 0 0 0 2X 2X 2X 2X 0 0 0 2X 2X 2X 2X 0 0 0 0 2X 2X 2X 2X 0 0 0 0 2X 2X 2X 2X 0 0 0 2X 2X 0 0 2X 2X 2X 2X 2X 2X 0 0 0 0 0 2X 2X 2X 2X 0 0 0 2X 2X 0 0 2X 2X 0 2X 2X 0 0 0 0 2X 2X 0 2X 0 2X 2X 0 2X 0 0 2X 2X 0 2X 0 2X 0 0 0 2X 0 generates a code of length 90 over Z4[X]/(X^2+2) who´s minimum homogenous weight is 89. Homogenous weight enumerator: w(x)=1x^0+70x^89+140x^90+16x^91+12x^92+4x^94+3x^96+8x^97+2x^105 The gray image is a code over GF(2) with n=720, k=8 and d=356. This code was found by Heurico 1.16 in 2 seconds.